

Acte Cybercartographique
Peter Pulsifer, Sebastien Caquard, JP Fiset and Amos Hayes

Requirements Gathering
When it comes to computer engineering, the first activity to take place in a project is to
gather requirements. In a project like the cybercartographic atlas, this means to interpret
everyone vision or dreams of what the atlas might become, and translate those wishes
into a set of comprehensive requirements that can lead to a product, in this case the atlas,
that will answer the needs that were expressed. As in any human endeavour, it is difficult
to reach a perfect consensus; it is much easier to end up with a product that none likes.
This is because before a product is visible, everyone imagine it somewhat differently.
Therefore, it is important to focus on the needs of the user, and not on the wishes
expressed early.

Another difficulty in gathering requirements in this project had to do with the fact it is set
in a university geographic department settings. As such, most people are very literate
about computers. This is because a lot of emphasis on computers has been brought about
with the advent of GIS. Therefore, many persons involved in the project can discuss at
great length about implementation details. It would be easy to fall into the trap of taking
those wishes as requirements since they are so well articulated from the perspective of a
computer engineer. However, the amalgamation of a set of implementation details rarely
leads to a product that answers the true needs of the user. In fact, proceeding that way
leaves to chance the likelihood of answering the user’s needs.

Discussing with team members, one of the recurring theme was to make it easier for
potential authors to publish atlas modules. This came from various comments:

• “A student in a school using the atlas should be able to cut and paste some part of
the atlas and add his text and then make a report.”

• “We want a tool set where we can easily generate the modules we want.”

• “In the end, the atlas has to be responsive, where we can click here and get all the
information we want there.”

• “We will be able to reuse the atlas and publish about many problematic areas
where the population should be informed.”

• “An atlas wiki is what is really needed.”

• “I do not want to learn all that javascript (or other technology) stuff”.

All these comments refer to the fact that people find cumbersome to publish material.
Geographer have a lot to say, but must struggle with a wide variety of technologies to say
what needs to be explained. From those comments, a first requirement was established:

The atlas framework must provide a lower cost to publication than other means
available at the present time.

Other requirements that were gathered:

• Atlas content shall be available from a web browser.

• Atlas content should offer highly responsive interactions between the map and the
text.

• Atlas content should be derived from live data that reside in distributed databases.

• The atlas should be developed using open standards.

• The atlas should support the research being conducted in the department.

This is not an exhaustive list of all requirements, but it should be enough to illustrate
some of the difficulties in design. First and foremost, it is evident that one of the pressing
needs is to give easier tools to content authors so that publishing of an atlas module is
made easier, and thus hide the technical aspects from the authors. On the other hand, the
content shall be highly responsive and provide interactions between the text and the map.
The latter points towards a certain level of complexity greater than current technologies
offer.

Design
The next phase in development is to design a solution that answers the
needs/requirements stated. This is an iterative approach where possible designs are
contemplated. At each iteration, current tools are evaluated for fitness and the design is
refined. As the design evolves, it is compared to all stated requirements.

At a beginning of a computer project, it is often difficult to get a handle on the final
product. As illustrated in the previous section, users’ expectations are very likely to
change given the nebulous interpretation of requirements. Furthermore, early prototypes
often stimulate discussions as a boundary object is introduced. The prototype becomes a
vehicle of understanding between the designer and the customers. Because of this
likelihood of change, a good design is one that take into consideration what will change.

In the end, it was decided to take an approach where the atlas modules would be written
independently of the atlas’ implementation details. Using this approach, the authors of
atlas modules have a certain area of responsibility, while the atlas provider and atlas host
have other clearly defined roles.

This model was inspired from another open source project called DocBook, where
technical documents are written independently of the formatting. In DocBook, documents
are written void of formatting details. Instead, a number of tools turn the information into
web sites, PDF document or PostScript files (DocBook is explained at
http://docbook.org)

This approach allows authors to work on modules, at the same time as the atlas “look-
and-feel” is refined. As it is easy to predict that the look of the atlas (its rendering, style
and functions) are going to change, it is a good design decision to shelter the work of
authors from the implementation details of the atlas. It also partially fulfills the
requirement where authors should be presented with a simpler perspective to publishing,
one hopefully void of implementation details such as details required by scripting

languages.

The previous figure shows the three perspectives:

• Module Author: The module author is left with the responsibility of creating
XML documents that describes an atlas module. This document contains all the
text that the author wants to publish. It also specifies the maps that should be
displayed. And finally, it contains markup elements that links features on the map
to information found in the text.

• Atlas Provider: Responsible for transforming the work of the authors into a set of
packages that can be published on the web. The atlas provider makes decision
about the organization of the pages, the look-and-feel of the pages, the interaction
level between the map and the text. The atlas provider produces a set of web files,
including HTML, SVG, Javascript and Servlets that can be deployed on a web
site.

• Atlas Hosting: In our model, this is the last step. The activity of atlas hosting
entails to make available all of the atlas provider packages with all the supporting
applications and databases.

This organization takes away a lot of the rendering aspects away from the module author.
Because atlas modules are given a “cookie template”, then the author can concentrate on
the text and the maps without worrying about technology decisions that are affected by
the technological issues. On the other hand, the author is constrained to the facilities
offered by the atlas provider when it comes to displaying the maps.

At this point, XML documents are still too technical for authors. We are hoping that with
time, tools will be built to help generate those documents. Easy to use graphical user
interface applications would probably be the best suited for the needs of the authors.

The atlas provider is left with the task of weaving the different modules into one coherent
atlas. Tables of content and navigation systems are required to proceed further. At this
time, there is only one ‘atlas compiler’, since we are devising a prototype. Our hope is
that with time multiple incantations of compilers would be available. Therefore, a
module could be reused in multiple atlases.

Implementation
Once design has been agreed upon, implementation takes place. The design and
implementation phases are never completely dissociated since implementation details
often affect the overall design. Often, early prototypes are assembled to prove or disprove
some design assumptions. Also, review of available projects that could potentially be
reused can often influence the design phase.

Many technologies and projects are reviewed, and here is a list of technologies that were
considered:

• GIS: MapServer, GeoServer, Deegree

• Databases: PostgreSQL, MySQL

• Web Servers: Apache HTTPD, Jakarta Tomcat

• Client Applications: Microsoft Internet Explorer, Mozilla, Adobe SVG Viewer,
Macromedia Flash

• Browser Technologies: HTML, DHTML, Javascript, SVG, Flash

• Countless of available tools and Open Source projects

Each technology is considered against a number of objectives such as ease-of-use,
compatibility with other technologies, deployment facilities, level of industry adoption,
and many more.

Finally, a set of technologies/projects were selected and an implementation plan was
established. The following figure shows the technologies that were selected, and how
they interact. This is basically a detailed view of the “Atlas Hosting” perspective,
introduced in the previous figure.

Conclusion
It is simple to lose the voice of the cartographer in the production of a project such as the
one described here. From the perspective of a computer engineer or scientist, the
elements of cartography form only one part, although an important one, of the whole
story. As explained, the requirements definition has many human challenges, while the
design and implementation phases face many technical barriers.

